S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells.
نویسندگان
چکیده
We investigated the cell cycle modulation of dihydrofolate reductase (DHFR; tetrahydrofolate dehydrogenase, 7,8-dihydroxyfolate:NADP+ oxidoreductase, EC 1.5.1.3) levels in methotrexate-resistant Chinese hamster ovary cells synchronized by mitotic selection. DNA content and DHFR concentration were analyzed throughout the cell cycle by standard biochemical techniques and by double fluorescence staining utilizing the fluorescence-activated cell sorter. We found an S phase-specific period of DHFR biosynthetic activity. Commencing within hour 2 of S phase and continuing throughout the duration of S phase, there is a 90% increase in DHFR specific activity. This results from an approximately 2.5-fold increase in the level of DHFR, while total soluble protein increases 50% during the same period. This increase is the result of new synthesis of DHFR molecules initiated after the cell is physiologically committed to DNA replication. This increase in DHFR activity through S phage parallels the increasing rate of [3H]thymidine incorporation during the same interval. The maximum peak of DHFR activity is coincident with the maximum rate of DNA synthesis, both activities occurring during the bulk of DNA replication within the last stages of the 6.5-hr S phase.
منابع مشابه
Over-replication of DNA in S phase Chinese hamster ovary cells after DNA synthesis inhibition.
Agents that inhibit DNA synthesis increase the frequency of methotrexate resistance and gene amplification in cultured mammalian cells. Chinese hamster ovary cells blocked with hydroxyurea rereplicated dihydrofolate reductase gene sequences within a single cell cycle upon release from the block (Mariani, B.D., and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). Perturbation of DNA synthesi...
متن کاملSite-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure.
Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, her...
متن کاملIsolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity.
Mutants of Chinese hamster ovary cells lacking dihydrofolate reductase (tetrahydrofolate dehydrogenase, 7,8-dihydrofolate:NADP+ oxidoreductase; EC 1.5.1.3) activity were isolated after mutagenesis and exposure to high-specific-activity [3H]deoxyuridine as a selective agent. Fully deficient mutants could not be isolated starting with wild-type cells, but could readily be selected from a putative...
متن کاملThe matrix attachment region in the Chinese hamster dihydrofolate reductase origin of replication may be required for local chromatid separation.
Centered in the Chinese hamster dihydrofolate reductase origin of replication is a prominent nuclear matrix attachment region (MAR). Indirect lines of evidence suggested that this MAR might be required for origin activation in early S phase. To test this possibility, we have deleted the MAR from a Chinese hamster ovary variant harboring a single copy of the dihydrofolate reductase locus. Howeve...
متن کاملPreferential DNA repair of (6-4) photoproducts in the dihydrofolate reductase gene of Chinese hamster ovary cells.
We have developed a method to quantify (6-4) photoproducts in genes and other specific sequences within the genome. This approach utilizes the following two enzymes from Escherichia coli: ABC excinuclease, a versatile DNA repair enzyme which recognizes many types of lesions in DNA, and DNA photolyase, which reverts pyrimidine dimers. DNA is isolated from UV irradiated Chinese hamster ovary cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 78 8 شماره
صفحات -
تاریخ انتشار 1981